Last updated at Jan. 7, 2020 by Teachoo
Transcript
Ex 3.3, 24 Prove that cos 4๐ฅ = 1 โ 8sin2 ๐ฅ cos2 ๐ฅ Taking L.H.S. cos 4x = 2(cos 2x)2 โ 1 = 2 ( 2 cos2 x โ 1)2 -1 Using (a โ b)2 = a2 + b2 โ 2ab = 2 [(2cos x)2 + (1)2 โ 2 ( 2cos2x ) ร 1] โ 1 = 2 (4cos4x + 1 โ 4 cos2x ) โ 1 = 2 ร 4cos4x + 2 ร 1โ 2 ร 4 cos2x โ 1 = 8cos4x + 2 โ 8 cos2x -1 = 8cos4x โ 8 cos2x + 2 โ 1 = 8cos4x โ 8 cos2x + 1 = 8cos2x (cos2x โ 1) + 1 = 8cos2x [โ (1 โ cos2x)] + 1 = โ8cos2x [(1 โ cos2x )] + 1 = โ 8cos2x sin2x + 1 = 1 โ 8 cos2x sin2x = R.H.S. Hence R.H.S. = L.H.S. Hence proved
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24 You are here
Ex 3.3, 25
Ex 3.3
About the Author